skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Host, Bernard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A subset R R of integers is a set of Bohr recurrence if every rotation on T d \mathbb {T}^d returns arbitrarily close to zero under some non-zero multiple of R R . We show that the set { k ! 2 m 3 n :<#comment/> k , m , n ∈<#comment/> N } \{k!\, 2^m3^n\colon k,m,n\in \mathbb {N}\} is a set of Bohr recurrence. This is a particular case of a more general statement about images of such sets under any integer polynomial with zero constant term. We also show that if P P is a real polynomial with at least one non-constant irrational coefficient, then the set { P ( 2 m 3 n ) :<#comment/> m , n ∈<#comment/> N } \{P(2^m3^n)\colon m,n\in \mathbb {N}\} is dense in T \mathbb {T} , thus providing a joint generalization of two well-known results, one of Furstenberg and one of Weyl. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026